On the Formal Verification of the TCAS Conflict
Resolution Algorithms '

John Lygeros and Nancy Lynch

Laboratory for Computer Science
Massachusetts Institute of Technology

545 Technology Square, Cambridge, MA 02139
lygeros, lynch@les.mit.edu

Abstract

TCAS is an on-board protocol for detecting conflicts
between aircraft and providing resolution advisories to
the pilots. Because of its safety-critical role the TCAS
software should ideally be “verified” before it can be
deployed. The verification task is challenging, due to
the complexity of the TCAS code and the hybrid nature
of the system. We show how the essence of this very
complicated problem can be captured by a relatively
simple hybrid model, amenable to formal analysis. We
then outline a methodology for establishing conditions
under which the advisories issued by TCAS are safe.

1 Introduction

The Traffic Alert and Collision Avoidance System
(TCAS) [1, 2] is an on-board aircraft conflict detection
and resolution algorithm. Its task is to monitor air traf-
fic in the vicinity of the aircraft and provide the pilot
with information about neighboring aircraft that may
pose a threat and advisories on how to resolve these
conflicts. TCAS is a complex, safety-critical system
that should be tested, or, even better, formally verified
before it can be deployed. The TCAS software was de-
veloped through a sequence of progressive refinements,
starting with abstract, high-level specifications that got
refined down to a Statechart description, pseudo-code
and finally regular computer code. Part of the verifi-
cation problem involves proving that each level in this
process implements the high-level specifications. Moti-
vated by this example (and other applications to soft-
ware development for large scale systems) techniques
have been developed [3] for systematically carrying out
this process. In addition, one also needs to investigate
the performance of the closed loop system formed when
the proposed algorithm is coupled with the aircraft dy-
namics. So far the primary verification technique used
in this context has been simulation [4]. Successful re-
sults in extensive simulations provide a certain level of
confidence in the algorithm. More importantly, unsuc-

1Research supported by ARPA under F19628-95-C-0118, by
AFOSR under F49620-97-1-0337, by UTC under DTRS95G-
0001-YRS8 and by PATH, under MOU-238.

cessful simulation runs point to situations where per-
formance is insufficient and often suggest modifications
to improve it.

We believe that formal methods may be useful in this
setting. The advantage of formal analysis over simula-
tion is that it provides absolute guarantees about the
system performance, under a set of assumptions. In ad-
dition, formal analysis may prove to be more efficient
in the long run, as the results may be modified to ac-
commodate changes in the algorithm; in comparison, a
large number of simulations may have to be reexamined
even for minor changes. So far the application of formal
methods to this problem has been limited, primarily
because of the complexity of the algorithm. Much of
this complexity, however, is due to considerations such
as human factors, which should be secondary to safety.
In this paper we show how one can extract a relatively
simple protocol, that encapsulates the essence of the
TCAS algorithm from the safety point of view. The
model we derive (outlined in Section 2) is amenable to
formal analysis. This is illustrated in Section 3, where
some preliminary analysis of the safety of the algorithm
is conducted. We hope that once the analysis for this
simple model is complete the complexity of the origi-
nal algorithm can be gradually reintroduced, allowing
us to prove more involved safety properties.

The TCAS system is hybrid, involving both continuous
and discrete dynamics. The former arise from the air-
craft, the sensors and the pilot reaction and the latter
from the thresholds and discrete message passing used
by the TCAS algorithm!. Therefore any verification
effort will have to involve hybrid techniques. Our work
makes use of a combination of techniques from control
theory and distributed algorithms to tackle the verifi-
cation problem. The methodology presented here has
been successfully applied to other safety-critical trans-
portation systems, such as automated highways [6, 7],
personal rapid transit systems [8], train gate controllers

1There are also important probabilistic effects, arising from
sensor noise, uncertainty in the pilot response etc. These effects
will be mostly suppressed in our work. For a discussion of prob-
abilistic analysis for this problem the reader is referred to [5].

[9, 10] and aircraft conflict resolution [11].

2 System Model

2.1 Overview of the TCAS System

In cases of potential conflict the TCAS system enters
one of two levels of alertness. In the lower level the
system issues a Traffic Advisory (TA), to inform the
pilot of a potential threat, without providing any sug-
gestions on how to resolve the situation. If the danger
of collision increases a Resolution Advisory (RA) is is-
sued, providing the pilot with a maneuver that is likely
to resolve the conflict. In this study we do not address
TA’s, because of the uncertainty in the pilot response
and the low level of hazard involved.

The RA’s issued by the TCAS II 6.04A version cur-
rently in use are restricted to the vertical plane. Ma-
neuvers involve either climbing or descending at one
of a finite number of fixed rates. If both aircraft are
TCAS equipped, the algorithm [1, 2] uses a symmetry-
breaking communication protocol to uniquely deter-
mine the maneuver that each aircraft should follow to
resolve the conflict. Once a decision is reached the
maneuver is presented to the pilots and is not altered
until the conflict is resolved. TCAS II 6.04A has been

extensively tested in simulation [4] and in practice.

A newer TCAS II version that is currently being tested
also allows for reversals. RA’s are still restricted to
the vertical plane, but TCAS may change the advisory
during a conflict. This feature was added primarily
because of nondeterminism in the pilot response. If
one (or both) of the pilots chooses not to follow the
advisory, the original RA may become unsafe. TCAS
detects this and changes the RA if necessary. Clearly,
this type of algorithm is in greater need of verification;
potential problems include live-lock and unnecessary
reversals.

Future TCAS versions (TCAS IV) will produce RAs
both in the horizontal and the vertical plane, while
still maintaining the possibility of reversals. Our ap-
proach may be even more useful in this case, to provide
design guidelines for TCAS versions that are still at a
conceptual stage.

2.2 Overview of the Modeling Formalism

Following [12], we view a hybrid automaton, A, as a
dynamical system that describes the evolution of a fi-
nite collection of variables, V4. Variables are typed;
for each v € Vy let type(v) denote the type of v. For
7 C Vy, a valuation of Z is a function that to each
v € 7 assigns a value in type(v). Let Z denote the set
of valuations of 7; we refer to s € V5 as the state of A.
In this paper we assume that the evolution of the vari-
ables is over the set of times T2° = {t € R|t > 0}. The
evolution of the variables involves both continuous and
discrete dynamics. Continuous dynamics are encoded
in terms of trajectories over V4, that i1s functions that
map intervals of time to V. Discrete dynamics are

encoded by actions; upon the occurrence of an action
the state instantaneously “jumps” to a new value.

More formally, a hybrid automaton, A 1is a col-
lection, (Ua, Xa,Ya, X0, X0 204 @4, Da, Wa), of
three disjoint sets Uy, X4, and Y, of variables (called
input, internal, and output variables, respectively)
three disjoint sets ¥, %i2? and Y9! of actions (called
input, internal, and output actions, respectively) a non-
empty set @4 C Vo of initeal states, a set Dy C
Va x X4 xVa of discrete transitions and a set Wy
of trajectories over Vy, where Vy = U4 U X4 UY, and
Yu= ETUETtUE%t. Some technical conditions need
to be imposed on the above sets to guarantee that the
definitions are consistent; see [12] for a discussion.

Let fstate(w) (Istate(w)) denote the initial (final) state
of a trajectory w € W, defined over a left (right)
closed interval. An ezecution, «, of A is an alter-
nating sequence o = wpaywiasws - -+, with w; € Wy
defined over a left closed time interval, a; € X4,
fstate(wy) € ©4, and if w; is not the last trajectory
in « then its domain is a right-closed interval and
(Istate(w;), a;41, fstate(w;p1)) € Da. If « is a finite
sequence we assume 1t ends with a trajectory. An ex-
ecution is called finite if it is a finite sequence and the
domain of its final trajectory is right-closed. A state
s € Vi is called reachable if 1t is the last state of a
finite execution.

Hybrid automata “interact” through shared variables
and shared actions. Consider two automata A and B
with XaNVe=XgNVs=YgNYs =0 and E%”ﬂ
Ya=XPNYE =X N Y% = . Under some mild
technical assumptions, the composition, A x B, of A
and B can be defined as a new hybrid automaton with
Uaxp = (UaUUp)\(YaUYp), Xaxp = X4 UXp,
YaxB=YaUYp (similarly for EAXB)~ Oaxn, Daxn
and Wa«p are defined so that the executions of A x B
are executions of both A and B when restricted to the
corresponding variables and actions.

A derived variable of A 1s a function on V. Derived
variables are used to simplify the system description
and to facilitate the analysis. A property of A is a
boolean derived variable. A property is stable if, when-
ever 1t 1s true at some state, it is also true at all states
reachable from that state. A property is invariant if it
is true at all reachable states. Typically properties will
be shown to be stable or invariant by induction on the
length of the executions. It is easy to see that:

Lemma 1 If for all reachable states s, P is true at s
implies that P is true for all s' such that there exists
a € X4 with(s,a,s") € Da orthere exists w € Wy with
right closed domain and fstate(w) = s and Istate(w) =
s, then P is a stable property of A. If further P is true
at all s € © 4, then P 1s an invariant property of A.

In some places differential equations will be used to
simplify the description of the set W, (or at least parts
of it). In this case, W4 is assumed to be populated by

Aircrafti Aircraft j
Sensors Sensors
. Conflict Conflict ;
Filot Detectiol Detectio Filot
L Channel L
ji
Conflict / \ Conflict
Resolution . ~Resolution
™~ Channel
\\ ij \
N\ Advisories TCAS Intents

Figure 1: TCAS system components

all trajectories generated by the differential equation in
the usual way. To simplify the description of D4, we
will assign a precondition and an effect to each action.
The precondition is a predicate on V5 while the effect
is a predicate on Vo x V. The corresponding tran-
sition can take place only from states that satisfy the
precondition; moreover, the states before and after the
transition should satisfy the effect.

2.3 The TCAS Model

We model TCAS by a composition of components (Fig-
ure 1). For each component a model was extracted
from the TCAS documentation. The overall model is
closed, in the sense that input variables and actions of
one component are outputs of other components.

2.3.1 Aircraft Model: The system we con-
sider consists of N aircraft, labeled 1,..., N. FEach
aircraft, i, is modeled by an HA, A;. We assume
Yip =Xt = %94 = 0 and hence Dy, = 0. Each air-
craft is identified by a unique Mode_S number, stored
in an output variable Mode S; € N. Each aircraft
may or may not be equipped with an altitude report-
ing transponder; if 1t is, it may also be equipped with
TCAS. This hardware information is stored on an out-
put variable Fquipment; € {None, Report, TCAS}.

The physical movement of the aircraft is summarized
by the trajectories of its position and velocity. Let
pi = (i, vi,z) € R3 v = (vF,0!,v7) € R?® and
a; = (a¥,a?,ai) € R3 be the position, velocity and
acceleration of the aircraft with respect to some fixed
reference frame on the ground. We assume that all

trajectories in Wy, satisfy the differential equation:

I RE
vit) | L @(?)

We assume that the aircraft acceleration is un-
der the direct control of the pilot and set Y4, =
{Mode_S;, Equipment; , p;,v; }, Ua, = {a;} and X4, =
¢. The dynamics of equation (1) are very simple and
ignore important aircraft characteristics such as the de-

tails of the aerodynamic forces, high frequency modes,
the effect of structural controls and input constraints.

Equation (1) should be sufficient in our case, however,
as the maneuvers required by TCAS are rather mild.

2.3.2 Sensors: FEach aircraft is equipped with

sensors that return information about its state and the
state of neighboring aircraft. The sensor of aircraft ¢
is modeled by an HA, S; with Us, = {p;, vj}j»vzl. The
output variables of .S; are estimates of the altitude,
h! € R, and vertical rate, h! € R, for all aircraft and
the distance (range), Rg € RT, and its rate Rﬁ cRrR
between aircraft ¢ and each neighboring aircraft j. We
set EZST = Egﬁt = 0.
The information that the sensors provide about the air-
craft state is quantized spatially and sampled tempo-
rally. We assume that the output variables of the sensor
automaton fall within an interval centered at the “cor-
rect” values dictated by the actual state of the system.
Let n4, nar, ng and nggr denote the width of the in-
tervals for hl, k!, Rl and R} respectively. The output
variables of the sensors are updated every T seconds,
upon the occurrence of an output action Sample;. An
internal variable T; € R keeps track of the time that
has elapsed since the last sample.

2.3.3 Conflict Detection: The role of the
conflict detection automaton, D;, is to determine
whether neighboring aircraft pose a threat. The input
variables of D; are the output variables of 5;, as well as
boolean variables Threat! which indicate whether the
conflict resolution automaton is already aware of the
threat. We set X4 = X' =0 and Xp, = Yp, = 0.

Aircraft j is declared a threat by aircraft ¢ upon the
occurrence of an output action Declare, and ceases to
be regarded as a threat upon the occurrence of an out-
put action Undeclare]. Two derived boolean variables,
Range_Test and Altitude_Test, are used to determine
the preconditions of these actions. The Range_Test en-
codes the conditions that the range and range rate need
to satisfy for aircraft j to be declared a threat:

Range_Test = (R} > 10ft/s ARV (R < 10ft/s A Ry)
where:
Ry = (R] < DM) A (RIR < 1)
Ry = (R < 12nmi) A (ﬁ—{}% < TR)

The Altitude_Test is based on the predicted vertical
separation at 7 = |R:/ min{ R, —10ft/s}|, the “time
of closest approach”.

Altitude_Test = |(hi — hf) - (hz - hﬁ)r < ZT
DM, H1, TR and ZT are TCAS parameters that depend

on the current altitude.

At this stage we assume that j is declared a threat
by ¢ as soon as it “passes” both range and altitude
tests. In practice a number of exceptions to this rule

are introduced in the TCAS implementation, mostly
to reduce the number of false alarms. Once declared
a threat, j continues to be considered a threat until it
fails the range test. At this point the action Undeclare’
takes place.

2.3.4 Conflict Resolution: Conflict resolu-
tion is modeled by an HA, R;, (Appendix A) with
Ugr, = Y5, U {Mode_5;, Equipmentj}j»\;l. The output
variables of R; are Threat. and a resolution advisory for
the pilot, consisting of a Sense; € {Climb, Descend, L}
and a Strength; € { -2000, -1000, -500, 0, 1500, 2500 }
(in ft/min). The sense indicates whether ¢ should try
to pass above (Climb) or below (Descend) the intruding
aircraft. Sense; = L (undefined) indicates that no ac-
tion is needed. Strength provides a bound on the verti-
cal speed to ensure sufficient vertical separation at time
7. R; maintains two internal variables; the boolean
Reversed; that keeps track of whether the sense selec-
tion has already been reversed during the current en-
counter and Intent_Sent! € {Climb, Descend, L} that
keeps track of the last intent message sent by i to j.
Intent messages can be thought of as “commands” to
j as to which sense it should select?.

R; has no internal actions. Sense selection can hap-
pen when j is first declared a threat (upon the oc-
currence of input action Declare!), whenever an intent
message is received from another TCAS equipped air-
craft (upon occurrence of input action Receive! (dir)
with dir € {Climb, Descend}, and whenever new data
comes in from the sensors (upon occurrence of input
action Sample;). The advisory is removed whenever
the intruding aircraft ceases to be considered a threat
(upon occurrence of input action Undeclare!). i com-
municates its intent to j through an output action,

Send’ (dir) with dir € {Climb, Descend}.

Sense selection is based on the predicted vertical sep-
aration at time 7. Consider first the case of a climb
advisory. To predict the vertical separation TCAS as-
sumes that the intruding aircraft will maintain its cur-
rent speed. If hi > 1500, TCAS assumes that the pilot
will maintain the current climb rate. The vertical sep-
aration at time 7 is then given by:

Az(Climb) = (hi — hl) + (Al — hi)r

If hZ < 1500 on the other hand, TCAS assumes that
the pilot will respond to the advisory after a delay d by
applying a constant vertical acceleration ai = a until
hZ = 1500 ft/min. A similar expression produces the
value of Az(Climb) in this case. The climb separation
is adequate if Az(Climb) is above a threshold ALIM.
The predicted separation in case of a descent advisory,
Az(Descend), can be similarly calculated.

Aircraft ¢ issues an advisory against aircraft j for the
first time when either the conflict detection automaton

2In the TCAS code a Climb intent is referred to as a “Do not
Descend” and a Descend intent as a “Do not Climb”.

declares it a threat or when j sends an intent mes-
sage (indicating that it has already issued an advisory
against ¢). In the former case, ¢ (the first of the two to
detect the conflict) chooses an advisory sense based on
a derived variable Indep_Choice. If neither climb nor
descent provide adequate separation, the one that pro-
duces the largest separation is chosen®. If one produces
adequate separation but the other does not, the one
that does is chosen. If both produce adequate separa-
tion preference is given to the non-crossing advisory (a
climb if 7 is already higher and a descent if it is lower).
If 5 has already issued an advisory, the complemen-
tary sense (encoded by the received intent) is typically
chosen. The only exception is if ¢ has a lower Mode_S
number, the received intent is crossing (j is higher and
has requested ¢ to Climb or it is lower and has requested
i to Descend) and ¢ believes a non-crossing advisory is
possible.

The sense may be reversed later on if, for example, one
(or both) of the pilots thwarts the advisory. If j is
not TCAS equipped, ¢ reverses its advisory whenever
it is predicted that the current advisory will not lead to
adequate separation, while the reversed advisory will.
The same is more or less true if 5 is TCAS equipped
but ¢ has a lower Mode_S number*. The only differ-
ence 1s that in this case ¢ can only reverse once and
then only if the current advisory is crossing. The new
intent is communicated to j which is forced to change
its advisory accordingly.

The advisory strength is updated every time new data
becomes available. The choice of Strength;, depends
on the predicted vertical separation at time 7. The
new strength is chosen according to a derived variable
Strength_Choice, which returns the smallest strength
that will provide separation at least ALIM at time 7.
For example, if Sense; = Climb, (hi — hl) + (=500 —
hi)r > ALIM and (hi—hl)+(=1000—hl)r < ALIM
then Strength_Choice = —500.

2.3.5 Communication Channel: Communi-
cation of intents is achieved through a communication
channel automaton, C;;. The automaton has an input
action Sendg (dir), whose effect is to store the intent,
dir, together with a time stamp in an internal multiset.
The message is delivered (and removed from the multi
set) upon occurrence of the output action Receiveg(dir).
Delivery is guaranteed by at most d;; time units from
the time the message was sent.

2.3.6 Pilot: The pilotis modeled by an HA, F;,
with Up, = {Sense;, Strength;, hi} and Yp, = {a;}. The
pilot may choose not to follow a particular advisory or
to follow it after some delay. This information is stored

3Tt is assumed that conflict detection will take place early
enough so that this case will never have to be exercised. We only
include it here for completeness.

4The aircraft with the higher Mode_S number can not initiate
a reversal.

in the boolean variable Follow; and the real variable d;.
The pilot automaton has no input or output actions.
An internal action New_Advisory; takes place whenever
the advisory changes.

We assume that the pilot can apply a range of acceler-
ations in each of the three directions, a;(t) € [a;, @] =
[af, @] x [¢!,a!] x [af,@}]. We also assume that the pi-
lot tries to keep v7 in [v7,7;]. The width of the ranges
reflects considerations such as passenger comfort and
standard pilot practice. To ensure that all advisories
can be followed we assume that ¢, < —a < 0 < a <@,
[—2500, 2500] C [vf,7;] and v; (0) € [vf,77].
Whenever a new advisory comes in the pilot decides if
it will be followed and chooses a delay d; € [d;, d;]. We
assume that if the pilot chooses not to follow an advi-
sory (or when none is present) he/she arbitrarily sets
the vertical acceleration in the interval [g;,@;]. If the
pilot chooses to follow the advisory, he/she is assumed
to respond by at most d;, by applying a constant ver-
tical acceleration af = a until Strength; is reached; a
pilot is assumed to set af = 0 if the current vertical

rate meets the advisory strength. One can show that:

Lemma 2 v} (t) € [v; — 248 %7 + 241] for all t > 0.

3 Verification Example

To illustrate how safety properties of the TCAS algo-
rithm may be analyzed, consider a pair of well-behaved
aircraft, defined as a system that satisfies:

Assumption 1 N = 2, Fquipment, = TCAS, oaf (t) =
al(t) = 0 and Follow;(t) = True fort >0 and i = 1,2.

K3

Let Az = 21 — x2, Avy, = v]7 — v§, etc. Consider the
case where after a finite number of advisory changes,
the TCAS algorithm converges to a fixed pair of advi-
sories (Sensey, Strength,) and (Senseq, Strengthy). As-
sume that the final advisories are “consistent”:

Assumption 2 There exists dy > 0 such that for
all t > dg and for i = 1,2, Sense;(t) are constant,
Sense;(t) # L and Sense;(t) # Senses ().

Without loss of generality assume that Sense; =
Climb. Let Avj = Strength, + Strength, represent the
minimum difference in vertical speed dictated by the
advisory. One can show that:

Lemma 3 There exists d > 0 such that for allt > d,
a?(t) =0 and Av,(t) > Av? — nup.

Let 6 = d —t and consider the derived variable:

Save = Az +6(vf =5 —nar)
a (Ar+6Av)Av+(Ay+6Avy)Av
_(sz — nAR) Av§+Av§ - -

ArzAvz+AyAv
SAvg = Az-— (AU? - nAR)W

if t <d and t > d respectively.

Lemma 4 (Says > ALIM) is a stable property of a
pair of well behaved aircraft.

Proof (sketch): None of the quantities in the right
hand side of Saye are affected by any of the system
actions. Therefore, if (Says > ALIM) is true at the
pre-state of an action it is also true at its post-state.
Note that SAU? 1s continuous as a function of time and
Save = Av,— (v —Ti—nap) ift < dand Saye = Av,—
(Av? —nug) if t > d. In either case SAvg(t) > 0 (by
Lemmas 2 and 3 respectively). Therefore, if (Says >
ALIM) is true at the first state of a trajectory, it will
also be true at the last state. ™

The quantity Sa,s is related to the safety of the sys-
tem. Consider the horizontal separation of the two air-

craft Ryy = /Az?+ Ay?. Consider the time T =

_Ax(0)§;’;iizgo)Avy and assume that 7' > d; this sim-
x y

ply requires that the aircraft be far enough for the pilots
to implement the advisory before the point of closest
horizontal approach.

Theorem 1 If Saya(0) > ALIM then the vertical sep-
aration at the point of closest horizontal approach will
be at least ALIM.

Proof (sketch): At time T, R,, achieves its mini-
mum value. By Lemma 4, Say«(0) > ALIM im-
plies (Saye > ALIM) is an invariant property. At
time T, Az(T)Av, + Ay(T)Av, = 0. Therefore,
Save(T) > ALIM implies Az(T) > ALIM, ie. the
vertical separation when the horizontal separation be-
comes minimum being at least ALIM . ™

4 Current & Future Research

Section 3 contains only a small part of the argument
needed to show safety even for this simplified system.
Assumption 2 clearly needs to be shown to be a prop-
erty of the algorithm. This will complete a safety theo-
rem for a pair of well-behaved aircraft. The proof then
needs to be extended by relaxing Assumption 1: we
need to investigate what happens if multiple aircraft
are present, if the pilots accelerate in the x and y di-
rections and if one of the pilots chooses not to follow
the advisory. The last extension should also provide
insight into the case of an unequipped threat. The
analysis is complicated further in this case as multiple
reversals are possible.

All proofs discussed so far will be based on the assump-
tion that the model of Section 2 adequately captures
the system. This model contains a number of simplifi-
cations, in the aircraft dynamics, the TCAS algorithm
and the pilot response. These simplifications can be
progressively removed. We hope that once a proof for
the above nominal case is available, it can be extended
to other cases, possibly using abstraction relations.

References
[1] Radio Technical Commission for Aeronautics,
“Minimum operational performance standards for

TCAS airborn equipment”, Tech. Rep. RTCA/DO-
185, RTCA, September 1990, Consolidated Edition.
[2] The MITRE Corporation, “TCAS II collision
avoidance subsystem requirements specification”; 1996.
[3] Nancy Leveson, SafeWare : system safely and
computers, Addison-Wesley, 1995.

[4] A.C. Drumm, “Lincoln laboratory evaluation of
TCAS 1I logic version 6.04a”, Tech. Rep. ATC-240,
Lincoln Laboratory, MIT, February 1996.

[65] James K. Kuchar, A Unified Methodology for the
FEvaluation of Hazard Alerting Systems, PhD thesis,
Massacussets Institute of Technology, 1995.

[6] John Lygeros, Datta N. Godbole, and Shankar
Sastry, “A verified hybrid controller for automated ve-
hicles”, in CDC, 1996, pp. 2289-2294.

[7] Ekaterina Dolginova and Nancy Lynch, “Safety
verification for automated platoon maneuvers: a case
study”, in Proceedings of HARTY97, number 1201 in
LNCS, pp. 154-170. Springer Verlag, 1997.

[8] H.B. Weinberg, Nancy Lynch, and Norman
Delisle, “Verification of automated vehicle protec-
tion systems”, in Hybrid Systems I1I, number 1066
in LNCS, pp. 101-113. Springer Verlag, 1996.

[9] C. Heitmeyer and N. Lynch, “The generalized
railroad crossing: A case study in formal verification of
real-time systems”, in Proc. ICCC Real-Time Systems
Symposium, San Juan, Puerto Rico, 1994.

[10] John Lygeros, Datta N. Godbole, and Shankar
Sastry, “A game theoretic approach to hybrid system
design”, in Hybrid Systems I1I, number 1066 in LNCS,
pp- 1-12. Springer Verlag, 1996.

[11] George J. Pappas, Claire Tomlin, and Shankar
Sastry, “Conflict resolution for multi-agent hybrid sys-
tems”, in CDC, 1996.

[12] Nancy Lynch, Roberto Segala, Frits Vaandrager,
and H.B. Weinberg, “Hybrid I/O automata”, in Hy-
brid Systems III, number 1066 in LNCS, pp. 496-510.
Springer Verlag, 1996.

A Conflict Resolution Automaton R;

Data Types:
Dir = {Climb, Descend}, Diry = DirU {1}
Strengths = {—2000, —1000, —500, 0, 1500, 2500}
Aircraft = {1,..., N}, Others; = Aircraft \ {i}
Input Variables:
Mode_S; € N, j € Aircraft
Equipment; € {None, Report, TCAS}, j € Aircraft
h! € R* and hf € R for j € Aircraft
Rﬁf € Rt and Rﬁ € R, for j € Others;
Internal Variables:
Reversed; € Bool, initially False
Intent_SentZ: € Diry , j € Others;, initially L
Output Variables:
Sense; € Diry , initially L
Threatg € Bool, j € Others;, initially False
Strength; € Stengths, initially 0
Derived Variables (see text):

Az(dir) € R and OK{(dir) € Bool, dir € Dir
Indep_Choice € Dir
Strength_Choice € Strengths

Input Actions:
Declareg and Undeclareg for j € Others;
Receiveg(dir), j € Others;, dir € Dir
Sample;

Output Actions:
Send (dir), j € Others,, dir € Dir

Discrete Transitions:
Declareg :
Effect: ifﬂThreatZ: then
Threatg := True; Sense; = Indep_Choice
Undeclareg:
Effect: if Threatg then
Threatg := False; Intent_SentZ: =1
Sense; := L; Reversed; := False
Receiveg(dir):
Effect: if (Mode_S; > Mode_S;) then Sense; := dir
if ﬁThreatZ: then
Threatg := True
if (Mode_S; < Mode_S;) then
if (dir = Climb A b > h?)
then Sense; := Climb
elseif (dir = Descend A ki < hf)
then Sense; := Descend
else Sense; = Indep_Choice
Sample;:
Effect: if Threatg then
if Bquipment; # TCAS A OK(Climb)
A= OK(Descend) then Sense; := Climb
if (Equipment; # T'CAS N =OK(Climb)
AOK(Descend) then Sense; := Descend
if Equipment; = TCAS N Mode_S; < Mode_S;
A—Reversed) then
if Sense; = Descend A OK(Climb)
A=OK(Descend) A hi > hi then
Sense; := Climb; Reversed; := True
if Sense; = Climb A =OK(Climb)
AOK(Descend) A ht < hf) then
Sense; := Descend; Reversed := True
Strength;, = Strength_Choice
Sendg (dir):
Precondition:
(Sense; = Climb A Intent_SentZ: # Descend
Adir := Descend)V
(Sense; = Descend A Intent_SentZ: # Climb
Adir := Climb)
Effect: Intent_SentZ: = dir

Trajectories:

Input variables follow arbitrary trajectories.
Internal and output variables remain constant.
Trajectories stop as soon as the precondition of
Sendg(dir) becomes true.

